ОПИСАНИЕ ИНЖЕНЕРНО-ТЕХНИЧЕСКОГО ПРОЕКТА «Универсальный измерительный прибор» Лиза Соснова (15 лет), Тина Кабир (14 лет) ДНТТМ МГДД(ю)Т, г. Москва

1. Описание проблемы.

С 8 класса мы увлекаемся физическими опытами и экспериментами, но настоящий Мир физики открылся нам на занятиях в рамках факультативного курса "Физика и биофизика в природе", где мы познакомились с исследовательскими работами наших старшеклассников. Ребята исследуют лазерными методами микроструктуру биологических объектов, моделируют миражи на лабораторном столе, звуком управляют распадом водяной струи на капли, ... Они работают с лазером и ртутной лампой, дифракционными решетками, мультиметрами и другими Мы приборами. же заинтересовались вопросом: самостоятельно изготовить физический прибор, точность которого не уступает аналогичному школьному оборудованию?

Наше исследование началось с поисков ответа на простой вопрос: как взвесить птичье перышко? Мы решили эту проблему, а круг наших интересов постепенно расширялся и уточнялся. Можно ли разработать универсальный учебный прибор, измеряющий и массу тел и плотность веществ, который был бы прост в изготовлении и использовании и, в отличие от [1-4], не включал бы сложного оборудования?

2. Имеющиеся варианты решения проблемы и их недостатки.

В поисках наиболее простых в использовании методик мы отобрали те, в которых процесс определения массы или плотности сводится к измерению линейных размеров простой линейкой. Их можно разделить на две группы:

- 1). Рычажные весы [5,6]. Процесс взвешивания или определения плотности жидкости сводится к измерению плеча рычага или уровня жидкости в цилиндре. Такой прибор универсален, но неудобен в использовании, так как равновесие в нем не достигается автоматически (рис. 1).
- 2). Поплавковые весы [7]. Процесс взвешивания сводится к измерениям глубины погружения поплавка. Эти весы можно изготовить из обычных пластиковых бутылок, и они более удобны в использовании, чем рычажные, равновесие в них достигается автоматически (рис. 2). Однако, авторы [7] не придумали способ измерять плотность веществ этим прибором.

найти Вывод: В литературе удалось нам не описания использовании и простого в изготовлении универсального прибора, позволяющего измерять как массу тел, так и плотности веществ.

Цель нашей работы: изготовить простой в использовании универсальный учебный прибор, позволяющий измерять как массу тел, так и плотность жидкостей, сыпучих материалов и твердых тел.

Задачи, поставленные в работе:

- 1. Разработать методику измерения массы тел и плотности веществ с помощью универсального прибора.
 - 2. Изготовить прибор и произвести его калибровку.
- 3. Исследовать возможные причины появления систематических ошибок измерений данным методом.
 - 4. Подготовить компьютерную программу расчета случайных ошибок измерений.
 - 5. Провести тестирование прибора.
 - 6. Проанализировать достоинства и недостатки прибора.
- 7. Оценить эффективность использования прибора в качестве учебного оборудования, как на уроках, так и в домашних условиях.
- 8. Создать сайт-презентацию проекта с полным описанием прибора и руководством по его изготовлению и использованию.

3. Суть предложенного технического решения проблемы.

Прибор предназначен для измерения 10 физических величин:

- 1) масса тела: Точность измерений 2) объем тела; соответствует точности 3) плотность жидкости; учебного оборудования 4) плотность сыпучего материала; плотность твердого тела; 5) Проведены успешные 6) атмосферное давление; тестовые испытания 7) плотность атмосферы;
- 8) температура атмосферы; 9)
- плотность газа в замкнутом сосуде;

10) давление газа в замкнутом сосуде.

Теоретически обоснована возможность измерений и выведены универсальные формулы

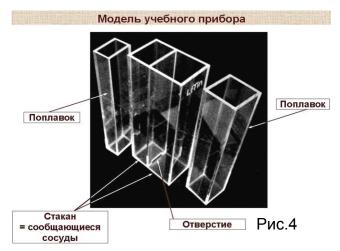
Все 10 величин измеряются одним прибором с помощью простой линейки!

Устройство первой простейшей модели

Устройство прибора из прозрачных пластиковых бутылок (рис.3): поплавок помещаем во внешний стакан, между ними закрепляем направляющий цилиндр.

Диаметры направляющего цилиндра и поплавка должны отличаться на возможно минимальную величину (порядка 3÷5мм), обеспечивающую свободное перемещение поплавка. На поплавке закрепляем чашку весов. направляющем цилиндре проделаны отверстия ДЛЯ свободного проникновения воды.

Уже данная простейшая


модель позволяет измерять массы тел и плотности веществ с хорошей точностью. Проведя тестирование прибора, мы нашли возможности модифицировать модель с целью расширения спектра измеряемых величин и повышения точности измерений.

Устройство универсального учебного прибора

Прибор состоит из двух вертикальных сообщающихся в нижней точке

прозрачных плексигласовых сосудов постоянного сечения, назовем «стаканы» (рис.4), высотой 32 см.

B каждый стакан вставлен «поплавок» форме сосуд, ПО совпадающий С соответствующим стаканом. зазор между стаканом 1-2 поплавком порядка обеспечивает свободное перемещение поплавка в стакане в вертикальном направлении. На каждом поплавке и на стакане нанесена миллиметровая шкала.

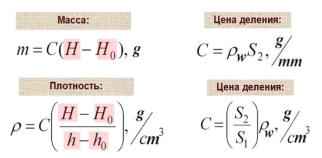
Принцип работы прибора

основан на законах Архимеда, Паскаля,

условии плавания тел, свойстве сообщающихся сосудов, условии несжимаемости жидкости, законе Бойля-Мариотта, уравнении состояния идеального газа.

Порядок работы с прибором

- 1). Все прямые измерения производятся простой линейкой (по шкалам прибора). стакан Заливается 1. Необходимо измерять только уровни жидкости в приборе. жидкость известной плотности (наилучший вариант вода). поплавок заливается жидкость неизвестной плотности или засыпается сыпучее вещество. Либо поплавок заполняется частично водой, в которую опускают тело
- разработанной методике необходимо измерять только уровни жидкостей в стакане и поплавке.


неизвестной плотности (рис.5).

2). На основе физических законов (перечисленных выше)

Плотность -? вода S_2 молоко H Рис. 5 картофель

выведены универсальные формулы, связывающие искомые величины с уровнем жидкостей в приборе (пример приведен на рис.6). Универсальность формул означает, что их вид не зависит от формы сосудов и, в частности, одинаков для обеих моделей. Подробный вывод всех формул представлен на сайте проекта [https://sites.google.com/site/2013litin].

которые позволяют рассчитать массу тел, плотность, давление и температуру вещества по измеренным уровням жидкости в приборе.

Формулы одинаковы для сосудов разной формы!

Рис. 6

3). Все необходимые расчеты физических величин по универсальным формулам, включая расчет погрешности измерений, производятся компьютерной программой (рис.7) в режиме on-line на сайте проекта [https://sites.google.com/site/2013litin/program].

Анализ возможных систематических ошибок.

Причины возникновения систематических ошибок измерений обусловлены дефектами приборов, ошибками в методике расчетов и т.п. [8]. Их довольно трудно обнаружить и учесть. Они приводят либо к завышению, либо занижению истинных результатов. Их нельзя уменьшить, увеличивая количество измерений и рассчитывая среднюю величину. Систематические ошибки при измерениях нашим прибором могут быть обусловлены наличием не учтенных нами ранее сил, действующих на исследуемое тело.

Влияние силы поверхностного натяжения воды.

Систематической ошибки вследствие действия сил поверхностного натяжения удается избежать. Сила поверхностного натяжения постоянна по модулю и направлена постоянно в одну сторону (либо вертикально вверх, либо вертикально вниз в зависимости от того, смачивает вода поверхность поплавка или нет) [9]. А поскольку предлагаемая методика предполагает при каждом взвешивании проводить два измерения уровня жидкости и находить их разность, то влияние этих сил на конечный результат отсутствует, поскольку они взаимно вычитаются.

Влияние силы трения.

Направление силы трения покоя, действующей на поплавок в момент установления равновесия, зависит от того, в каком направлении двигался поплавок к положению равновесия. Чем ближе остановится поплавок к положению равновесия, соответствующему случаю отсутствия трения, тем меньше будет модуль силы трения покоя. Таким образом, силы трения покоя, в отличие от сил поверхностного натяжения, в каждом опыте будут немного отличаться и при вычитании не полностью компенсируются. Однако, проведя серию измерений массы тела и изменяя начальные условия в каждом опыте (направление движения к положению равновесия), можно перевести систематическую ошибку в разряд случайной и минимизировать ее, увеличив количество измерений. Именно по этой методике мы определяли цену деления приборов и проводили последующие эксперименты с ними.

Условие несжимаемости жидкости.

С помощью этого условия мы показали, что при расчете объема вытесненной поплавком воды от обычно выполняемых измерений глубины погружения поплавка y_0 и y по шкале поплавка (которая плохо различима, когда поплавок находится в стакане с водой) можно перейти к измерению уровня воды в стакане H_0 и H по шкале стакана, которая расположена снаружи прибора.

Тестирование прибора

Подробные результаты тестирования прибора приведены на <u>сайте</u> <u>работы</u> [10]. Измерения проводились на нескольких экземплярах изготовленных нами простейших моделях с разной ценой деления, а также на модели учебного прибора, контролировались измерениями на учебных лабораторных рычажных весах и сопоставлялись с табличными данными плотностей некоторых веществ.

Результаты тестирования прибора совпадают в пределах погрешности эксперимента с контрольными результатами, полученными на учебном лабораторном оборудовании, и согласуются с опубликованными данными плотности веществ.

Проведены успешные тестовые измерения атмосферного давления и теоретически обоснована возможность измерения плотности и температуры атмосферы, а также давления и плотности газа в замкнутом сосуде.

4. Преимущества предложенного авторами технического решения

Выводы

1). Разработана методика и изготовлен универсальный гидростатический прибор для величин. Именно 10 физических универсальность прибора составляет новизну данной работы. Прибор не имеет аналогов в мире.

2). Основные достоинства прибора:

- универсальность;
- простота в изготовлении;
- простота и удобство в использовании: все прямые измерения производятся простой линейкой, а все расчеты – компьютерной программой;
- малая погрешность измерений (1÷3 %).

3). Основные недостатки:

- для увеличения пределов измерения необходимо увеличивать высоту используемых емкостей.

5. Область применения прибора

- 1) учащимися средней школы, дополнительного образования, групп факультативов, кружков, станций юных натуралистов и т.п. в качестве учебного прибора
- Продемонстрирована физическом лабораторном практикуме. В эффективность применения прибора на уроках физики в 4-11 классах. Расчеты всех величин и погрешности измерений выполняются компьютерной программой.
- в биологическом лабораторном практикуме. По измеренной плотности картофельного клубня и используя соответствующие таблицы можно определить концентрацию крахмала в клубнях. Что позволяет рекомендации ПО его использованию В кулинарии (пригоден для варки, жарки или для приготовления пюре) (рис.8).
- в домашних условиях (для лиц, занимающихся самообразованием) предусмотрена возможность изготовления действующей модели прибора из обычных пластиковых бутылок. Методика измерений и

Практическое применение Измерение концентрации крахмала в картофеле Сердцевину клубня помещаем в поплавок и измеряем плотность ρ Определяем концентрацию крахмала А% по таблице. Результат измерений плотности картофеля: $\rho = 1.106 \pm 0.010 \ g/cm^3$

Рис 8

компьютерная программа используются те же, что и для учебного прибора. Вся информация о приборе представлена на созданном нами сайте проекта [https://sites.google.com/site/2013litin/program].

Научный руководитель проекта подготовил сайт, на котором, в частности, приведена пошаговая инструкция по изготовлению простейшей модели прибора и его калибровке в домашних условиях https://sites.google.com/site/physicsdnttmnvp/home. Этим сайтом уже активно и успешно пользуются его ученики, обучающиеся по программе дополнительного образования детей «Физика и биофизика в природе» в ДНТТМ МГДД(ю)Т.

- 2) учителями физики в качестве демонстрационного оборудования.
- школьниками при посещении домов детского творчества в качестве интерактивного прибора для проведения опытов.

Пути усовершенствование прибора:

- исследование возможностей расширения пределов измерения;

- исследование возможностей изменения цены деления прибора с целью повышения точности измерений;
- разработка приспособлений, использование которых позволит расширить спектр измеряемых величин.

Список использованной литературы

- 1. История весов. http://www.istorya.ru/articles/vesy.php.
- 2. http://www.chemport.ru/data/chemipedia/article 2876.html
- 3. Кивилис С. С. Техника измерения плотности жидкостей и твердых тел. М., 1959.
- 4. Глыбин И. П. Измерение массы, объема и плотности. М., 1972.
- 5. Фурдик А.В. Измерение плотности жидкости с помощью ученической линейки. XVIII Всероссийские чтения им. В.И.Вернадского. 2011.
- 6. http://www.afportal.ru/answers/57
- 7. http://www.afterwork.com.ua/vesy-iz-plastikovyx-butylok.html
- 8. http://schools.keldysh.ru/sch764/files/pogr.htm.
- 9. Бутиков Е.И. и др. Строение вещества. М.: ФИЗМАТЛИТ, 2001 336 с.
- 10. Соснова E.A., Кабир С.Е. Сайт работы: https://sites.google.com/site/2013litin

Прибором «ЛиТин» (Лиза-Тина) можно измерить те же величины, что и весами, мензуркой, ареометром, барометром, манометром и термометром!

6. Презентация проекта

Оригинальность как идеи, так и конструкторского решения созданного прибора подтверждены победами на ряде конкурсов научно-технических проектов учащихся:

Конкурс/Конференция	Дата	Результат
Всероссийский конкурс	Апрель	Победители
исследовательских работ учащихся -	2013	(представлена первая, простейшая
чтения им. В.И. Вернадского	_0.0	модель прибора)
Очный финал международного	Сентябрь	Призеры (вошли в пятерку лучших из
конкурса научных работ учащихся	2013	нескольких тысяч участников из 120
13-18 лет Google Science Fair		стран)
(Маунтин-Вью, офис Google, США)		http://www.dnttm.su/nasa-zizn/vnesnie-
		konferencii-i-vyezdy/google-science-
		fair-2013
Городской конкурс инновационных	Ноябрь	Победители
предпринимательских проектов	2013	Диплом 1 степени
школьников (МГТУ им. Н.Э.		
Баумана, Москва)		
Городской конкурс инженерно-	Ноябрь	Победители
технических проектов детей и	2013	Диплом 1 степени
молодежи до 18 лет «Я		
изобретатель» (Московский центр		
инноваций и научно-технического		
творчества ИННАРТ)	Mont	Помости
Московский городской конкурс	Март 2014	Лауреаты
исследовательских работ школьников «Лингва» (Гимназия	2014	
школьников «лингва» (гимназия №1508, Москва)		
Московский региональный	Март	Лауреаты московского финала
отборочный тур Международной	2014	
конференции по развитию		
интеллектуальной собственности		
среди старшеклассников		
17-й Международный салон	Апрель	Участники, представляли ДНТТМ
изобретений и инновационных	2014	МГДД(ю)Т
технологий «Архимед-2014»		
(Конгрессно-выставочный центр		
«Сокольники», Москва)		
Молодежная научно-практическая	Апрель	Участники, представляли ДНТТМ
конференция «Региональные	2014	МГДД(ю)Т
программы и проекты в области		
интеллектуальной собственности		
глазами молодежи»		
(Совет Федерации РФ, Москва)		

Работа представлена как на официальных сайтах указанных конкурсов, так и опубликована в журнале «Физика – Первое сентября», № 2, 2014.